Incomplete Dominance

Blend of Alleles/An Intermediate Expression

Incomplete dominance is a condition in which neither of the two alleles for the same gene can completely conceal the presence of the other.

When four o'clock plants are cross breed, the true-breeding red flower and true breeding white flower produces an offspring with pink flowers. This is generation 1 or F_1

If the F₁ plants are allowed to to self-fertilize, the F₂ generation will include offspring with all three colours. Ratio 1:2:1 (red:pink:white)

 F_2 Generation results in an intermediate expression (blend) of pink C^RC^W

One way to represent alleles in incomplete dominance is to use superscripts (like we did with codominance). C = colour $C^R = red$ $C^W = white$

Example: A red colour flower : C ^R C ^R A blue flower: C ^B C ^B		C^{R}	C ^R	
C is for flower colour B is blue R is red	C_{B}	C ^R H ^B	C ^R C ^B	
Remember: Incomplete alleles (blend)	C_{B}	C^RC^B	C ^R C ^B	
		Offspring are C ^R C ^B = purple (blend)		

Assignment:

1. The alleles for hair colour in rabbits express incomplete dominance. If a black rabbit (H^B) mates with a white rabbit (H^W). What are the probable genotypes and phenotypes of their offspring? Complete a Punnett square

2. If one of the offspring from question #1, grey rabbit, mates with a white rabbit...What are the possible genotypes and phenotypes of the next generation of rabbits?

	Genotypes:	Phenotypes:
	% H ^B H ^B	% black
	% H ^B H ^W	% grey
	% H ^w H ^w	% white

3. Tail length in dogs is determined by incomplete dominance. Long-tailed dogs (T^LT^L)and short-tailed dogs (T^ST^S) will produce medium-tailed dogs (T^LT^S). What are the genotypes and phenotypes if two medium-tailed dogs have offspring? Draw a Punnett square.