Incomplete Dominance

Blend of Alleles/An Intermediate Expression

Incomplete dominance is a condition in which neither of the two alleles for the same gene can completely conceal the presence of the other. When four o'clock plants are cross breed, the true-breeding red flower and true breeding white flower produces an offspring with pink flowers. This is generation 1 or F_{1}	If the F_{1} plants are allowed to to self-fertilize, the F_{2} generation will include offspring with all three colours. Ratio 1:2:1 (red:pink:white)
	F_{2} Generation results in an intermediate expression (blend) of pink $C^{R} C^{W}$

One way to represent alleles in incomplete dominance is to use superscripts (like we did with codominance).
$C=$ colour $\quad C^{R}=$ red $\quad C^{W}=$ white

Example: A red colour flower: $C^{R} C^{R}$ A blue flower: $C^{B} C^{B}$	$C^{R} \quad C^{R}$		
C is for flower colour B is blue	C^{B}	$\mathrm{C}^{\mathrm{R}} \mathrm{H}^{\text {B }}$	$C^{R} C^{B}$
Remember: Incomplete alleles (blend)	C^{B}	$C^{R} C^{B}$	$C^{R} C^{B}$
		ring ar	urple

1. The alleles for hair colour in rabbits express incomplete dominance. If a black rabbit $\left(H^{B}\right)$ mates with a white rabbit $\left(H^{\mathrm{W}}\right)$. What are the probable genotypes and phenotypes of their offspring? Complete a Punnett square

2. If one of the offspring from question \#1, grey rabbit, mates with a white rabbit...What are the possible genotypes and phenotypes of the next generation of rabbits?

3. Tail length in dogs is determined by incomplete dominance. Long-tailed dogs ($T^{L} T^{\mathrm{L}}$) and short-tailed dogs $\left(T^{S} T^{S}\right)$ will produce medium-tailed dogs $\left(T^{\mathrm{L}} T^{\mathrm{S}}\right)$. What are the genotypes and phenotypes if two medium-tailed dogs have offspring? Draw a Punnett square.
